Define likelihoods using different different distribution families
likelihood(family, ...)an object of class likelihood
The following distribution families can be used for the likelihood
normal a normal distribution
student_t a scaled and shifted t-distribution
noncentral_t a noncentral t (for t statistic)
noncentral_d a noncentral t (for one sample d)
noncentral_d2 a noncentral t (for independent samples d)
binomial a binomial distribution
The parameters that need to be specified will be dependent on the family
When family is set to normal then the following
parameters must be set
mean mean of the normal likelihood
sd standard deviation of the normal likelihood
When family is set to student_t then the following
parameters may be set
mean mean of the scaled and shifted t likelihood
sd standard deviation of the scaled and shifted t likelihood
df degrees of freedom
When family is set to noncentral_t then the following
parameters may be set
t the t value of the data
df degrees of freedom
When family is set to noncentral_d then the following
parameters may be set
d the d (mean / sd) value of the data
n the sample size
When family is set to noncentral_d2 then the following
parameters may be set
d the d (mean / s_pooled) value of the data
n1 the sample size of group 1
n2 the sample size of group 2
\(s_{\mathrm{pooled}}\) is set as below: $$s_{\mathrm{pooled}} = \sqrt{\frac{(n_1 - 1)s^2_1 + (n_2 - 1)s^2_2 } {n_1 + n_2 - 2}}$$
# specify a normal likelihood
likelihood(family = "normal", mean = 5.5, sd = 32.35)
#> Likelihood
#> Family
#> normal
#> Parameters
#> mean: 5.5
#> sd: 32.35
#>
# specify a scaled and shifted t likelihood
likelihood(family = "student_t", mean = 5.5, sd = 32.35, df = 10)
#> Likelihood
#> Family
#> student_t
#> Parameters
#> mean: 5.5
#> sd: 32.35
#> df: 10
#>
# specify non-central t likelihood (t scaled)
likelihood(family = "noncentral_t", t = 10, df = 10)
#> Likelihood
#> Family
#> noncentral_t
#> Parameters
#> t: 10
#> df: 10
#>
# specify non-central t likelihood (d scaled)
likelihood(family = "noncentral_d", d = 10, n = 10)
#> Likelihood
#> Family
#> noncentral_d
#> Parameters
#> d: 10
#> n: 10
#>
# specify non-central t likelihood (independent samples d scaled)
likelihood(family = "noncentral_d2", d = 10, n1 = 10, n2 = 12)
#> Likelihood
#> Family
#> noncentral_d2
#> Parameters
#> d: 10
#> n1: 10
#> n2: 12
#>
# specify a binomial likelihood
likelihood(family = "binomial", successes = 2, trials = 10)
#> Likelihood
#> Family
#> binomial
#> Parameters
#> successes: 2
#> trials: 10
#>